Warning: session_start(): Unable to clear session lock record in /home/www1/www1/1/www.zuimeng.net2025/chapter.php on line 3

Warning: session_start(): Failed to read session data: memcached (path: 127.0.0.1:11211) in /home/www1/www1/1/www.zuimeng.net2025/chapter.php on line 3
第三百九十七章 通往无限的可能性(2/2)_黑长直女王_新笔趣阁

第三百九十七章 通往无限的可能性(2/2)

度分解的。

对球来说,五块就足够做到这din了,但少于五块却不行。这个悖论甚至有个更强的版本:

任意两个三维欧几里德空间具有非空内部的子集是等度分解的。

换句话说,一块大理石可以分成有限块然后重新组合成一个行星,或者一部电话机可以变形之后藏进一朵百合花里面。在现实生活中这种变形之所以不可行是因为原子的体积不是无限小,数量不是无限大,但其几何形状确实可以这样变形的。如果知道总是可以存在从一个几何体的内部din一一映射到另一个的方法,也许这个悖论看上去就不那么怪异了。例如两个球可以双射到其自身同样级别的无限子集(例如一个球)。同样我们还可以使一个球映射到一个大din或者小din的球,只要根据半径放大系数即可将一个din映射到另一个。然而,这些变换一般来说不能保积,或者需要将几何体分割成不可数无限块。巴拿赫-塔斯基悖论出人意料的地方是仅用有限块进行旋转和平移就能完成变换。

使这个悖论成为可能的是无限的卷绕。技术上,这是不可测的,因此它们不具有“合理的”范围或者平常说的“体积”。用小刀等物理方法是无法完成这种分割的,因为它们只能分割出可测集合。这个纯粹存在性的数学定理指出在多数人熟悉的可测集合之外,还有更多更多的不可测集合。

对于三维以上的情形这个悖论依然成立。但对于欧几里德平面它不成立。(以上叙述不适用于三维空间的二维子集,因为这个子集可能具有空的内部。)同时,也有一些悖论性的分解组合在平面上成立:一个圆盘可以分割成有限块并重新拼成一个面积相同的实心正方形。参见塔斯基分割圆问题。

这个悖论表明如果等度分解的子集被认为具有相同体积的话,就无法对欧几里德空间的有界子集定义什么叫做“体积”。

……

司回顾着自身的存在,以及自身存在的某种意义……她忽然地……像是明白了什么……

而她所明白,所理解的事情……似乎也真的要改变这个世界,改变她自己……(。。)
本章已完成! 请记住【黑长直女王】最新更新章节〖第三百九十七章 通往无限的可能性〗地址https://m.zuimeng.net/2/2808/440.html