第101章 疯狂的数学菜鸟(7/7)
个结论就将为复杂高维代数曲线上的有理点数量的上界估计提供扎实的理论依据。
证明了第一步之后,就是找到这个常数的公式,并证明这个公式正确的。
然后——问题解决!
不过当乔喻满怀壮志的准备证明这个命题的时候,突然觉得他提出的这个问题好像有那么点无从下手。
他似乎陷入了把大象放入冰箱需要几步的怪圈。
第一步,打开冰箱门,第二步,把大象放进去,第三步,关冰箱门。
唯一的问题是,他好像还没找到有大象那么大的冰箱!
尤其是乔喻突然发现,即便这个常数公式真的存在,那它将不仅依赖于曲线的几何性质,还可能依赖于数域 的特性、曲线的模形式结构甚至其他代数几何工具。
因为他绞尽脑汁之后,乔喻发现现有的代数几何工具,似乎并不支持能把这个给找到。
如果换了一个正常数学人大概这个时候就会选择放弃了,但乔喻不太一样,他只是一个数学菜鸟,而且已经把这项挑战当成了一个游戏。
虽然没有头绪,但万一成功了?
而且还是那句话,没有工具,完全可以自己造嘛。
想当年彼得·舒尔茨才21岁,就能生造出一套如此牛逼的理论框架来,没道理他十五岁,就不能创造出几个能用的数学工具了,更别提整个理论框架都是人家提供的,他只需要在框架下进行二次创造,难度明显小的多。
毕竟规则都已经摆在那里,他只需要在这个框架规则的限定下,通过严谨的数学逻辑证明他的工具没错就够了。
所以接下来的工作又能进一步简化了,什么样的代数几何工具能帮他证明这个常数存在。
乔喻愁眉苦脸的想了很久,然后再次确定了,首先他需要一个新的同调范畴工具。
于是稿纸上又出现了一排字迹:
“同调范畴 ()是一个增强的同调范畴,定义在代数曲线 的完备化空间上。其基本对象是传统同调类 ^i(,),但我们需要对其进行特殊处理,通过一个新的算符,该算符作用于同调类上,使得同调范畴中的每个对象不仅有拓扑结构,还具备一个额外的不变量……”
呼……乔喻很满意的看着这个表述,有了这个新的同调范畴,就能更精细地分解曲线的同调群,能让证明常数的步骤大幅度简化,完美!
果然,研究数学让人快乐!
那么现在新的问题又来了,如何定义这个新的算符,乔喻感觉又卡壳了……
,不管了!想不通先把这个放一边,反正要证明常数,这一个工具还不够……
于是已经彻底疯癫的乔喻,又开始生造起第二个工具,现在他需要一个新的模糊测度函数去逼近常数。
“代数曲线-进模糊测度μfuzzy()是一种新的测度函数,用于描述代数曲线 在-进几何环境中的模糊性质。其定义如下……”
万字更新第18天打卡完成!
感谢书友20201229074741818、书友2024100519的打赏鼓励!
另:看书评区发现竟然真有学数学的书友在看本书,特此再次强调一下,书中所有涉及到所谓新的数学理论,全是作者瞎编的,不存在任何借鉴意义,更没有任何数理逻辑性可言!
这只是,兄弟们看了乐呵一下就好,当真作者就疯了!如果真有人研究出类似的新数学工具或者理论,那也纯属巧合!
(本章完)
本章已完成! 请记住【巅峰学霸】最新更新章节〖第101章 疯狂的数学菜鸟〗地址https://m.zuimeng.net/508/508175/103.html